Model Reduction of Nonlinear Differential-algebraic Equations

نویسندگان

  • Johan Sjöberg
  • Kenji Fujimoto
  • Torkel Glad
چکیده

∗ Division of Automatic Control Department of Electrical Engineering, Linköpings universitet, SE-581 83 Linköping, Sweden ∗∗ Department of Mechanical Science and Engineering, Nagoya University, Japan Abstract: In this work, a computational method to compute balanced realizations for nonlinear differential-algebraic equation systems is derived. The work is a generalization of an earlier work for nonlinear control-affine systems, and is based on analysis of the controllability and observability functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Tau-Collocation Method for Solving Nonlinear Integro-Differential Equations and Application of a Population Model

This paper presents a computational technique that called Tau-collocation method for the developed solution of non-linear integro-differential equations which involves a population model. To do this, the nonlinear integro-differential equations are transformed into a system of linear algebraic equations in matrix form without interpolation of non-poly-nomial terms of equations. Then, using coll...

متن کامل

Nonlinear Model Reduction of Differential Algebraic Equation (DAE) Systems

Most process models resulting from first principles consist of not only nonlinear differential equations but also contain nonlinear algebraic equations, resulting in nonlinear DAE systems. Since large-scale nonlinear DAE systems are too complex to be used for real-time optimization or control, model reduction of these types of models is a strategy that needs to be applied for online application...

متن کامل

An algebraic calculation method for describing time-dependent processes in electrochemistry – Expansion of existing procedures

In this paper an alternative model allowing the extension of the Debye-Hückel Theory (DHT) considering time dependence explicitly is presented. From the Electro-Quasistatic approach (EQS) introduced in earlier studies time dependent potentials are suitable to describe several phenomena especially conducting media as well as the behaviour of charged particles (ions) in electrolytes. This leads t...

متن کامل

ALGEBRAIC NONLINEARITY IN VOLTERRA-HAMMERSTEIN EQUATIONS

Here a posteriori error estimate for the numerical solution of nonlinear Voltena- Hammerstein equations is given. We present an error upper bound for nonlinear Voltena-Hammastein integral equations, in which the form of nonlinearity is algebraic and develop a posteriori error estimate for the recently proposed method of Brunner for these problems (the implicitly linear collocation method)...

متن کامل

The Sine-Cosine Wavelet and Its Application in the Optimal Control of Nonlinear Systems with Constraint

In this paper, an optimal control of quadratic performance index with nonlinear constrained is presented. The sine-cosine wavelet operational matrix of integration and product matrix are introduced and applied to reduce nonlinear differential equations to the nonlinear algebraic equations. Then, the Newton-Raphson method is used for solving these sets of algebraic equations. To present ability ...

متن کامل

Reduction of stable differential–algebraic equation systems via projections and system identification

Most large-scale process models derived from first principles are represented by nonlinear differential–algebraic equation (DAE) systems. Since such models are often computationally too expensive for real-time control, techniques for model reduction of these systems need to be investigated. However, models of DAE type have received little attention in the literature on nonlinear model reduction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007